数学中的黄金分割

2021年9月18日63

黄金分割是一个古老的数学方法。对它的各种神奇的作用和魔力,数学上还没有明确的解释,只是发现它屡屡在实际中发挥我们意想不到的作用。

数学中的黄金分割把一条线段分割为两部分,使其中一部分与全长之比等于另一部分与这部分之比。其比值是一个无理数,用分数表示为(√5-1)/2,取其前三位数字的近似值是0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。

数学中的黄金分割

做一个直角三角形ABC,直边AC的长度是直边BC的一半,以A为圆心,AC为半径,做圆交AB于D,以B为圆心,BD为半径做圆交BC于E,BE与BC之比即为黄金分割。笔直可计算出为

[5^(1/2)-1]/2≈0.618

此外,还有另一种使用黄金分割线的方法就是两点黄金分割线。

选择最高点和最低点(局部的),以这个区间作为全长,然后在此基础上作黄金分割线,进行计算出反弹高度和回荡高度。这个黄金分割线实际上是百分比线的一个特殊情况。

黄金分割奇妙之处,在于其比例与其倒数是一样的。例如:1.618的倒数是0.618,而1.618:1与1:0.618是一样的。确切值为(√5-1)/2,黄金分割数是无理数。

  • 本站文章来自网友投稿、本站原创以及互联网统一发布,部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考。